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Finite-size scaling in the ( 2 + 1 ) ~  Ising model 
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Abstract. Hamiltonian eigenvalues are calculated for the ( 2  + I )D  king model on lattices 
up to 5 x 5 sites. Finite-size scaling techniques are used to estimate the critical coupling 
x,= 0.329*0.001, and index Y =0.635*0.005. The prospects are discussed for further 
applications of these methods in three and four dimensions. 

1. Introduction 

Finite-lattice techniques have recently been developed (Hamer and Barber 1980, 
1981a,b, the last two to be referred to as HBI and HBII respectively, Roomany and 
Wyld 1980, Nightingale 1976) to explore the spectrum and phase structure of models 
in lattice field theory and statistical mechanics. The approach involves the calculation 
of eigenvalues of the Hamiltonian or transfer matrix on a sequence of lattices of 
increasing size. Sequence extrapolation algorithms (HBII, Barber and Hamer 1982) 
may then be used to estimate the bulk limit for an infinite lattice, in accord with the 
hypotheses of finite-size scaling (Fisher 1971, Fisher and Barber 1972, HBI). Critical 
parameters may be calculated using similar methods. 

These procedures have by now been demonstrated to equal or surpass in accuracy 
any other general numerical technique, for models in two dimensions (HBII, Blote et 
a1 1981), but in three or four dimensions, their efficacy is much less obvious. One 
needs a sequence of at least four or five different lattice sizes for the extrapolation 
methods to work, but the sheer numerical size of the problem forbids one from 
calculating exact eigenvalues for the larger lattices. 

The aim of the present work is to ‘calibrate’ the problem by applying these 
techniques to the 3~ Ising model and pushing them as far as possible. Roomany and 
Wyle (1980) have already studied the (2 + I )D Hamiltonian field theory version of 
the king model on lattices up to 4 x 4 sites in (spatial) extent. We have continued on 
to the 5 x 5 lattice. This calculation employed a basis of 86 056 spin states, which is 
an order of magnitude larger than previous works in this area (though calculations of 
similar size have been performed in nuclear physics, cf Whitehead er a1 (1977)). 

Applying sequence extrapolation methods (HBII, Barber and Hamer 1982) to these 
data, estimates of the critical coupling xc and index v were obtained: 

xc = 0.329* 0.001 

v = 0.635 * 0.005. 
(1.1) 

f Permanent address: Department of Theoretical Physics, Institute of Advanced Studies, Australian National 
University, PO Box 4, Canberra 2600, Australia. 
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These results are consistent with those obtained by series analysis (Marland 1981, 
Moore et a1 1969, Baker and Hunter 1973) and renormalisation-group methods 
(Baker et a1 1978, Le Guillou and Zinn-Justin 1980). Their accuracy is comparable 
t9 that of series analysis, but rather less than that of the renormalisation group. 
They provide evidence of universality with the 3D Ising model, as expected. 

In $ 3, it is pointed out that similar success cannot be expected for other models 
in three or four dimensions. For almost any other model, one will be unable to 
calculate exact eigenvalues for the 4 x 4  lattice, let alone the 5 x 5 .  Our sequence 
extrapolation methods then become virtually useless. 

Some possible ways out of this situation exist. The logical next step is to explore 
the use of approximate rather than exact finite-lattice eigenvalues. By making 
systematic approximations, one may truncate the number of basis states to be con- 
sidered, and thus treat larger lattice sizes (this is clearly reminiscent of the Monte-Carlo 
philosophy). It then remains to be seen whether reliable extrapolations of these 
approximate finite-lattice sequences can be made. 

2. Finite-size scaling analysis 

The quantum Hamiltonian field theory version of the Ising model has been discussed 
by Fradkin and Susskind (1978). On a two-dimensional spatial lattice of M x M sites, 
with a continuous time variable, the quantum Hamiltonian may be written: 
(Hamer et a1 1979), in a 'high-temperature' representation, 

Here the index m labels sites on the spatial lattice, and (bi} are its two unit base 
vectors. The CT, are Pauli matrices acting on a two-state spin variable at each site, g 
is a dimensionless coupling constant (proportional to temperature), a is the lattice 
spacing and x = 2/g2. It is convenient to work, instead, with the reduced Hamiltonian 

Periodic boundary conditions are assumed: 

crl(m +Mbi)  = c ~ l ( m ) .  

The quantities of interest to us are the two lowest-lying eigenvalues of W, denoted 
w o  and w l .  They have been computed for a sequence of different lattice sizes M = 1-5. 
The calculations for the 5 x 5 lattice were long and tedious, involving a basis of some 
86 000 strong-coupling eigenstates. Technical comments on the methods of computa- 
tion may be found in the appendix. 

The correspondences between Hamiltonian field theory and statistical mechanics 
are by now standard (see e.g. Kogut 1979, HBI, HBII). The quantities of physical 
interest here can all be deduced from the two eigenvalues w o  and wl. They include 

t In the language of statistical mechanics, this is the 'transverse k ing  model' Hamiltonian. The correspon- 
dence between the d-dimensional transverse Ising and (d  + 1)-dimensional ordinary Isiiig models is well 
known (Elliott e: ai 1970, Pfeuty 1970, Suzuki 1976). 
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the mass gap or inverse correlation length 

the Callan-Symanzik /3 function 

P (g) F(x  1 - 
g (F(x 1 - 2xF’(x 1) 

and the ‘specific heat’ (HBI) 

C(x ,  = -x2w6(x). 

(2.4) 

Finite-size scaling methods can be used to estimate the behaviour of these functions 
in the bulk limit, M+oo (for details and a history of these methods, the reader is 
referred to previous work: HBI, HBII, Roomany and Wyld 1980). Away from the 
critical point, the eigenvalues are expected to converge linearly to their bulk limit, 
and so an iterated Aitken’s algorithm can be used to estimate this limit from the 
finite-lattice values (HBII). The ensuing results for the ground-state energy per site, 
the. specific heat per site, the mass gap and beta function are illustrated in figures 1 
and 2. For the beta function, the upper set of finite-lattice curves are those for the 
function (2.4); the lower set depict the Roomany-Wyld estimates, 

k 

Figure 1. ( a )  Ground-state energy per site, and ( b )  specific heat pei site, plotted against 
the variable x. The broken curves are finite-lattice results, labelled by the lattice size M. 
The f d l  curve is the estimated bulk limit, and is expected to be accurate to the order of 
the width of the curve, except where breaks appear. 
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Figure 2. ( a )  The mass gap, and ( 6 )  the beta function, plotted against the variable x. 
Conventions are as in figure 1. In ( 6 )  the upper curves are the direct finite-lattice results, 
equation (2.4); the lower ones are the Roomany-Wyld estimates, equation ( 2 . 6 ) .  The 
Roomany-Wyld estimates for M = 4 and 5 are almost indistinguishable from the bulk 
limit, so for clarity they have been omitted. 

Here F M  ( x )  is the mass gap for lattice size M, and R M  ( x )  is the 'scaled mass gap ratio' 
(HBI) 

As can be seen from figure 1(6), the Roomany-Wyld estimates converge remarkably 
quickly to the bulk limit. A critical point is clearly evident at ~ ~ ~ 0 . 3 3 :  the mass gap 
and beta function vanish there, and the specific heat shows evidence of a divergence. 

Finite-size scaling can now be used to estimate the critical parameters. First of 
all, a sequence of estimates of the critical point, { x M } ,  may be found (HBI, HBII) as 
solutions of the equation 

R M ( X M )  = 1. (2.8) 
The results are listed in table 1. This sequence is expected to converge logarithmically 
to the bulk limit. Now in HBII a 'modified VBS algorithm' (Vanden Broeck and 
Schwartz 1979) was used to extrapolate such sequences. However, this algorithm 
requires a minimum of five terms in the original sequence, so it is inapplicable here, 
Instead, we use an algorithm due to Lubkin (1952) which can start on only four 
terms, and which we have found (Barber and Hamer 1982) to be similar in accuracy 
and reliability to the VBS one. Let the terms of the original sequence be denoted 
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Table 1. Finite-size scaling estimates for the critical point x,, and critical indices l / u  and 
n/u. The finite-lattice estimate for each quantity, respectively, is x M ,  pM(0)  and ~ ~ ( 0 1 ,  
as defined by equations (2.8), (2.12) and (2.15), where M is the larger of the two lattice 
sizes used in each estimate. 

2 0.260 342 1.278 17 2.000 00 
3 0.316 000 1.380 21 0.782 01 
4 0.324 249 1.432 43 0.592 47 
5 0.326 696 1.463 80 0.512 

S,, n 3 0; and define 

s, -&-I  

Sfl-1 -s,-2 
R ,  = (S-1 = 0) .  

Then the terms in the transformed sequence are (Lubkin 1952) 

The new sequence is expected to converge more rapidly than the original one. 

monotonic and rapidly convergent, so that a fit of the form 
The results of this extrapolation are given in table 2. The sequence { X M }  is smooth, 

x m  - xc-aM-* (2.10) 
M - m  

gives the exponent A-3.5. Our final estimate for the critical point is 

x c =  0.3289k0.001. (2.11) 

The exponent U can be calculated (HBI, HBII) from the finite-lattice beta function 
(2.4), evaluated at the ‘pseudo-critical points’ x M .  Define 

(2.12) 

where E (the ‘end-shift’) is a free parameter which is inserted to test the accuracy and 
reliability of the sequence extrapolation; then we expect 

lim p M ( & )  = l / u  for all E .  (2.13) 
M-30 

Table 2. Typical sequence extrapolation using Lubkin’s algorithm for the critical point x,, 
and the critical indices l / v  and a / u .  In each case, the left-hand column lists the finite-lattice 
estimates, and the right-hand column lists the Lubkin extrapolants. 

2 0.260 342 1.150 35 2.000 00 
3 0.316 000 0.324 821 1.288 20 7.930 31 0.782 01 0.268 61 
4 0.324 249 0.328 873 1.360 80 1.574 89 0.592 47 0.277 
5 0.326 696 1.405 25 0.512 
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Values of p M ( 0 )  are listed in table 1. Using the Lubkin algorithm (2.9) to extrapolate 
this sequence, one obtains the results depicted in figure 3(a). The result is stable for 
E < 0, and choosing E = -0.2 we obtain (table 2) 

1 / v  = 1.575*0.01 

v = 0.635 f 0.005. 
(2.141 

Figure 3. Estimates of ( a )  1 / v ,  and ( b )  a/v, as functions of the end-shift E .  The estimates 
were obtained by Lubkin’s method from sequences of finite-lattice results, as discussed 
in the text. 

The exponent A governing the convergence of this sequence icf (2.10)) is A = 1.0. Note 
that our estimate of v is ‘unbiased’ in the sense that it does not depend on the 
critical-point estimate, equation (2.1 1). 

Finally, an attempt was made to estimate the specific heat exponent a. Defining 
a sequence of values (HBII) 

where again E is a free ‘end-shift’ parameter, we expect 

lim ( T ~ ( E )  = a/v for all E .  (2.16) 
M-r?? 

Values of ~ ~ ( 0 )  are listed in table 1.  The results of a Lubkin extrapolation are shown 
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in figure 3(b). They are fairly stable to changes in E (except where a switch occurs 
ifi the direction of approach to the limit, E = -1,5), and hence one might assign 

a/v =0.295*0.02 

a =0.19*0.02. 
(2.17) 

This is a poor result when compared with other approaches which give a ~ 0 . 1 .  One 
might perhaps ascribe this failure to the presence of ‘background’ terms; however, 
figure l ( b )  shows little sign of a strong, constant ‘background’, and such a term might 
be expected to decrease the apparent value of a rather than increase it. A more 
likely explanation is that our sequence is simply too short: the initial entry u2, for 
instance, contains no ‘dynamical’ information, and a sequence of effectively three 
members is insufficient even for the Lubkin algorithm. 

The accuracy claimed for the critical parameters xc and v may seem surprising, in 
view of the fact that we considered only lattices up to 5 x 5 sites. The explanation 
lies in the fact that the Ising model is extremely well behaved, and provides smooth 
and rapidly convergent estimates in the high-temperature region. This was already 
seen in previous series analysis work, and it is again evident in the finite-lattice results 
presented here. 

3. Discussion 

Our principal results for the critical parameters of the ( 2  + I)D Ising model, in summary, 
are 

x c  = 0.3289 f 0.001 

v = 0.635 f 0.005. 
(3.1) 

These were obtained from a sequence of square, M x M  lattices up to M = 5 .  They 
are therefore expected to be more accurate than the estimates x c  = 0.320 f 0.001 and 
v = 0.6401 0.004 obtained by Roomany and Wyld (1980) using lattices up to M = 4. 

The most accurate series results for this model are those of Marland (1981), who 
calculated ‘low-temperature’ series for the Hamiltonian (2.1) using a linked cluster 
expansion. He quotes 

x,=0.3285 f 0.0005 

/3 =0.315*0.005 

a t  = 0.097*0.001 

y t  = 1.25 ztO.002. 

Our estimate of the critical point is in good agreement with equation (3.2). Unfortu- 
nately there is no direct estimate of the exponent v in this work. 

The ordinary 3~ Ising model has been studied extensively in statistical mechanics, 
of course. The various numerical results have been reviewed by Le Guillou and 
Zinn-Justin (1980). Among the most accurate estimates from high-temperature series 
analysis are 

(Moore et a1 1969) 

(Baker and Hunter 1973); 

+0.002 
I /  = 0.6384.00~ 

a =0.13&0.01 (3.3) 
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while using field-theoretic renormalisation-group methods, the values obtained are 

0.630k0.0015 
0.630 k 0.002 

0.1 10 * 0.0045 
0.110k0.008 (Baker er a1 1978). 

(Le Guillou and Zinn-Justin 1980) 
(Baker e? a1 1978) 

(Le Guillou and Zinn-Justin 1980) 

v = [  

cy = {  
(3.4) 

Allowing for a little hyperbole in the error estimates all round, the estimates (3.1)-(3.4) 
are in quite good accord for the exponents v and a, providing evidence of universality 
between the 3~ and (2 + 1 ) ~  formulations. 

It thus appears that finite-lattice methods are capable of supplying critical exponents 
for the 3~ Ising model of comparable accuracy to those from series analysis, but they 
are still not quite competitive with renormalisation-group methods. What then, are 
the prospects for extending this approach to other models in three and four dimensions? 

.For the ( 2 c i ) ~  Ising model on a 5 x5 lattice, a total of 86056 strong-coupling 
basis states were involved in the calculation of each eigenvalue W O  and w l .  This 
number can be approximately predicted as follows. The total number of states in 
either the even- or odd-spin sector is 224 = 1.7 x lo’. However, the ground state is 
symmetric under translations, rotations and reflections: by exploiting this fact, and 
identifying spin states which are equivalent to each other under these transformations, 
we may reduce the number of basis states to be considered by a factor of approximately 
200, to about 8.5 x lo4. For a 6 x 6 lattice, the corresponding number is 235/288 
1.2 x 10’ states. A calculation of this size is quite out of the question at the present time. 

For more complicated models, the situation is even worse. For a 2, spin model, 
one might try to solve the 4 x 4  lattice-but for any more complicated model, even 
this would be impossible. Now with only 2 X 2 and 3 x 3 lattices available, our sequence 
extrapolation methods are virtually useless: one needs a sequence of reasonable length 
(four or five entries at least) in order to achieve good quantitative accuracy. Finite- 
lattice techniques should still give a reliable picture of the phase structure (Roomany 
and Wyld 1980, Irving and Thomas 1982), but no very accurate estimates of the 
critical parameters will be possible. 

Are there any ways out of this situation? One possibility is to make use of 
non-square lattices, e.g. the 2 x 3 lattice, in order to extend the length of the sequence. 
The scaling behaviour of non-square lattices has been discussed by Ferdinand and 
Fisher (1969), Roomany and Wyld (1980) and Horn and Karliner (1982). We have 
made some preliminary investigations of this option: it does not look very hopeful, 
but needs further exploration. The problems are (i) the 2 x 3 lattice results seem to 
merely ‘interpolate’ half-way between the 2 x 2 and 3 x 3 results, and carry no indepen- 
dent information, and (ii) the sequence algorithms of 0 2 are postulated upon equally 
spaced values of M, whereas a 2 X 3 lattice corresponds to a non-integral effective M. 
More flexible algorithms could no doubt be found. 

A second option is to retreat from the demand that the finite-lattice eigenvalues 
be exact. One may then employ some systematic method of approximation, truncate 
the number of basis states used in the calculation and thus obtain results for larger 
lattices. This option is inevitable, in fact, for models with a continuous symmetry 
group, because the total number of basis states is infinite, even for a finite lattice. We 
plan to pursue this idea in future work. 

Our conclusion, then, is that the finite-lattice method is unlikely to challenge series 
analysis and renormalisation-group techniques in the study of conventional second- 



Finite-size scaling in the IZ+I)D Ising model 1265 

order phase transitions in three and four dimensions. However, confining gauge 
theories have a more complicated singularity structure, so that conventional series 
analysis methods are inappropriate (Carroll er a1 1977, Hamer 1979), and renormalisa- 
tion-group methods have so far proved to be complicated and ineffective. We hope 
that finite-lattice techniques may have a role to play in these areas. 
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Appendix. Numerical methods 

Previous works (HBII,  Roomany et a1 1980, Irving and Thomas 1982) have discussed 
the numerical techniques used in finite-lattice calculations. We refer the reader to 
these papers for a full account, and merely append some comments for aficionados 
relevant to the case of the 5 x 5 lattice. 

(i) The calculations were performed on a VAX 11/780 computer with virtual 
memory. The total CPU time taken was of order 60 h. 

(ii) The basis states were taken as eigenstates of the operator X,,, (1 -u3(m))-i.e. 
ordinary spin states, in a ‘strong-coupling’ basis. Starting from the strong-coupling 
ground state, new basis states were generated by application of the pair operators 
u l ( m ) c l ( m  + E ; ) ,  until the list of basis states was complete, and the matrix elements 
of H connecting them had all been calculated and stored on tape. There were a total 
of 86056 states and about 2.1 x lo6 matrix elements generated in each of the odd- 
and even-spin sectors. 

(iii) Each new binary-coded state vector was transformed by translations, rotations 
and reflections, and its degeneracy factor under these operations was stored. Thence- 
forth, the minimum value of the binary state vector obtained during these transfor- 
mations was used to describe the state. Since this process takes up a major portion 
of the CPU time, it was carried out by an assembly-language subroutine, and in registers 
as far as possible, following Roomany et a1 (1980) and Irving and Thomas (1982). 

(iv) The different state vectors were held in an address-sorted master file for the 
purposes of comparing one with another. The hash code used was simply the binary 
number describing the state vector, suitably scaled down to fit the length of the file 
(it is advisable to take a square root or logarithm here also). However, the distribution 
of states is rather ‘spiky’, and many ‘collisions’ tended to occur when placing new 
states in the file. It was therefore found necessary to break the file up into bins, and 
to reshuffle it from time to time, recalculating the address limits on each bin so as to 
smooth out the distribution of occupied entries. This operation takes relatively little 
time, and prevents the number of collisions from escalating unmanageably as the file 

(v) In the second stage of the calculation, tapes containing a list of basis states 
and the matrix elements connecting them were processed using an iterative algorithm 

fills up. 
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for large sparse matrices to compute the minimum eigenvalue of H. Following the 
authors initially quoted, we used a Lanczos routine for this purpose, rather than the 
conjugate gradient method used previously. The Lanczos method seems somewhat 
quicker to converge, and for a large calculation like this one, offers the great advantage 
of requiring less storage space. 

(vi) During the Lanczos phase, it was at first found that an excessive number of 
page faults were occurring as the matrix H was multiplied into the state vectors. This 
problem was cured by buffering the entries into the new state vector and sorting them 
in order before emptying the buffer. 

(vii) In order to obtain the eigenvalues and their derivatives with sufficient accuracy 
at the ‘pseudo-critical’ points x M ,  these points were first identified approximately in 
a ‘first pass’ calculation, using M s 4  only. In a second pass, eigenvalues were 
calculated at a cluster of five points, spaced at intervals A, = 0.005, straddling each 
x M .  The required quantities could then be calculated accurately by finite-diff erence 
interpolation algorithms. For the 5 x 5 case, a single cluster centred at x = 0.32 was 
calculated. The Lanczos routine converged to an accuracy of one part in lo7 in 18 
or 19 iterations; approximately 50min CPU time was required per iteration for the 
five-point cluster. 
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